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LETTER TO THE EDITOR 

Covariance, CPT and the Foldy-Wouthuysen transformation for 
the Dirac oscillator 

Matias Moreno and Arturo Zentella 
Instituto de Fisica, Universidad Nacional Aut6noma de MCxico, Ap. Postal 20-364, Del. 
Alvaro Obregbn, D.F. 01000 MCxico, Mexico 

Received 9 June 1989 

Abstract. The covariance properties and the Foldy-Wouthuysen and Cini-Touschek trans- 
formations for the recently proposed Dirac oscillator are found. The charge conjugation, 
parity and time reversal properties are established. A physical picture as an interaction of 
an anomalous (chromo) magnetic dipole with a specific (chromo) electric field emerges 
for this system. This interaction suggests an alternative confinement potential for heavy 
quarks in QCD. 

In a recent work, Moshinsky and Szczepaniak [l] introduced an interesting force in 
the Dirac equation. In an analogy with the original Dirac procedure, they require an 
interaction linear in the coordinates. Subsequently, they show that the non-relativistic 
form of the interaction reduces to one of the harmonic oscillator type. Following [ 11, 
we will refer to this system as the Dirac oscillator. Its explicit form is 

id,V = HOD” 

=[a - ( p  -irp)mp]V (1) 
where the usual conventions have been taken [2]. This equation has the remarkable 
property of having exact solutions [llt. 

In this letter we study equation (1) for the single-particle case; we focus on two 
points. First, we present a manifestly covarient form of equation (1). Second, we 
deduce for it an exact Foldy-Wouthuysen transformation [4] (FWT). With these two 
elements a covariant field theory can be defined for the Dirac oscillator. Moreover, 
from the FWT the energy spectrum and the eigenfunctions are immediately obtained 
using the non-relativistic harmonic oscillator solutions. In order to build the covariant 
form of equation ( l ) ,  we notice that the interaction term in it, 

icu-r (2) 
can be put into the form 

i = l  

Introducing the frame dependent velocity vector 

U” = (1,O) 

f Exact solutions for a minimal electromagnatic interaction have been known for some time; see [3]. 
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the interaction can be put into the form 

ia r = upux,u,. 

Therefore, equation (1) can be rewritten as 

with 

(7) FPY = pcIx” 

and for the Dirac oscillator K = 2m/e. This form shows explicitly the covariance of 
the Dirac oscillator. We remark that the external ‘electromagnetic field’ of equation 
(7) is, as usual, frame dependent [5]. Additionally, this form shows a possible physical 
interpretation of the Dirac oscillator interaction as stemming from the anomalous 
magnetic moment. It also shows, without further ado, its charge conjugation, parity 
and time reversal invariance [6], [2, ~ 6 1 1 .  

We can now address to the problem of the FWT. Let us first recall that this 
transformation defines an operator HFW that is related to the Hamiltonian H by means 
of a unitary transformation 

id, - HFw = eis(id, - H)e-iS (8) 

where S is to be chosen such that H,, is purely even. More explicitly, one splits H 
into two Hermitian operators: an odd, OH, and an even, EH , part 

H = OH+ EH. (9) 

is = BOH8 (10) 

The usual choice [2] for iS  is 

with B and 19 Hermitian and even, 8 commutes with both B and OH; the additional 
requirement that {B,  OH} = 0 must be set for consistency so that S is Hermitian. In 
order to define the FWT one must specify the operator B and the ‘angle’ 8. 

We also remark that, from the well known identity 
AI = e i S ~  e-iS 

=A+[iS,A]+&[iS,A]]+. . .  (11) 

{ A ,  is}  = 0 (12) 

(13 )  

and since for the Dirac oscillator HOD does not depend explicitly on time there are 
no contributions to the Foldy-Wouthuysen Hamiltonian coming from the transforma- 
tion of 8,. Defining 

one can show that if S satisfies 

then 
AI = A e-2iS 

T := p - i p r  (14) 

HOD = a w +pm. (15) 

one can write 
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If the odd and even parts are defined according to 

O H = a - m  and EH = p m  

one arrives at the following proposal for the FWT 

iS=pa"IzO 

= 7 -  me. (18) 

Here i s  anticommutes with OH and EH provided that 8 commutes with them. Using 
the relations 

2 ( y  * P )  = -mt n-ia- ( m t  x P )  

n t . ~ = p 2 + m 2 - 2 p  

and 

mt x m = i 2 p ~  

and defining 

h2:= (a * P ) *  

one gets 

h 2 = - ( y .  P ) ~  

= p 2 +  r2 - p ( 3  + 4 ~  * S )  (22 )  

which is a positive definite Hermitian operator. The operator h2 has even and odd 
roots, two odd roots of h2 are *(a. P ) ,  taking h to be an even root (which we will 
show explicitly later) we obtain 

(23) eis = cos hO + ( y  ?r)h-' sin he. 

From this set-up it follows that 

HFW = eiSHoD e-iS 

1 m ( h 
= a -  m cos 2hO--sin 2h0 + p ( m  cos 2hO+h sin 2hO). (24 )  

Because the operator h and the mass m are Hermitian it makes sense to choose O such 
that 

m 
cos 2h0 -- sin 2h0 = 0 

h 

or, equivalently, 

h 
m 

The last form implies the consistency condition 

tan 2h0 =-. 

8 = e( h2) .  
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We finally arrive at the desired solution 

HFW = p J m 2  + h2 

= @ J m 2  + p 2  + r2 - p ( 3  + 4~ - S )  (28) 

Eigensolutions for this Hamiltonian can easily be obtained because the non- 
relativistic harmonic oscillator Hamiltonian, @, J 2 ,  Jz, L2, S2 and the coordinate reflec- 
tion operator commute among themselves and with H F W .  Furthermore, HFW is a 
functional of these operators. Hence, the spectra of the Dirac oscillator can be directly 
obtained from the non-relativistic oscillator solution and the eigenfunctions of these 
operators [2,3]. These eigensolutions coincide with those first found in [ 11 by squaring 
the HOD Hamiltonian for the positive energy part of the spectrum. 

Equation (27) also gives an explicit representation of the operator h, which is 
simply H F W  with the mass set equal to zero. Once the negative energy states are 
defined, one can proceed to construct the appropriate vacuum in order to define a 
consistent field theory for this system. 

One can also use equation (26) to transform the Dirac oscillator to a form adequate 
for the ultrarelativistic limit. This is done by selecting 6 such that the term multiplying 
@ vanishes; the resulting Cini-Touschek [7] Hamiltonian is 

We would like to notice that the remarkably simple properties of the Dirac oscillator 
interaction and the transparent physical interpretation that follows from its covariant 
form suggest that it might be a good candidate to be used as the confinement potential 
in heavy quark systems. 

If one tries to find an electric charge distribution that produces the linearly growing 
electric field that interacts with the anomalous magnetic moment of a Dirac particle 
to produce a Dirac oscillator, one reaches the peculiar conclusion that it is a uniform 
(infinite) sphere of charge. 

A different conclusion follows in the framework of quantum chromodynamics 
(QCD) if a slight modification of the usual ideas about confinement is adopted. In 
QCD, ignoring at this stage the subtleties of Gauss' law for the non-Abelian gauge 
theories [SI, the lines of field are conceivably confined to strings which might simulate 
the adequate potential without unphysical charge distributions. For example, an 
effective chromoelectric field which grows with distance stems from a physical picture 
in which the string is assumed to be of constant volume, as opposed to the more 
conventional hypothesis of a string of constant cross section. 

The authors would like to ,:knowledge many fruitful discussions about this work with 
Jean Pestieau, Marcos Moshinsky and Rodolfo Martinez. We also are grateful for a 
critical reading of the manuscript by Manuel Torres. 
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